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We consider whether use of traceless multipole moment densities in macroscopic electromagnetism can
yield physically acceptable results. For harmonic plane wave fields it is shown that a traceless electric quad-
rupole density yields linear constitutive relations for which the dynamical material constantsspermittivity and
magnetoelectric coefficientsd and response fields are unphysical. We further show that, within multipole theory,
these constitutive relations cannot be transformed into physically acceptable relations. Specifically, the trans-
formed response fieldD is unphysical for all orders beyond the electric dipole. This contrasts with use of
primitive stracedd moment densities, for which unphysical constitutive relations have been successfully trans-
formed up to electric octopole-magnetic quadrupole order, thereby providing also the leading contribution to
the ac permeability.
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I. INTRODUCTION

There have been numerous discussions of the manner in
which the macroscopic Maxwell equations

= ·D = r f , s1d

= 3 H = J f + Ḋ s2d

can be deduced from the microscopic equations of electro-
dynamics. Essentially, one performs suitable averages of se-
ries expansions for the microscopic charge and current den-
sities sor for the dynamic scalar and vector potentialsd. This
introduces the macroscopic multipole moment densities. De-
tailed accounts have been given by Russakofff1g, Robinson
f2g, Scaifef3g, and Jacksonf4g, where references to earlier
work can be found. For consistency in these multipole ex-
pansions, it is necessary to pair successive electric and mag-
netic multipole orders beyond the electric dipole in a particu-
lar way, namely, electric quadrupole with magnetic dipole,
electric octopole with magnetic quadrupole, and so onf5,6g.

To electric quadrupole-magnetic dipole order the response
fields are given in terms of the macroscopic electric and
magnetic fields and moment densities byf1–6g

Di = e0Ei + Pi −
1

2
¹ jQij s3d

Hi = m0
−1Bi − Mi , s4d

where Pi and Mi are the electric and magnetic dipole mo-
ment densities, andQij is the electric quadrupole moment
density. These densities are obtained fromsweightedd spatial
averages of the relevant multipole moments of “molecules”
in the mediumf1–4g. Thus Qij involves an average of the
electric quadrupole moment

qij = o qrir j , s5d

where r is the position vector of chargeq relative to an
origin inside a molecule, and the summation is over all

charges in a molecule. We refer tos5d as a primitivesor
tracedd moment to distinguish it from the corresponding
traceless moments33d. Traceless multipole momentssand
hence traceless densitiesd can be constructed for all orders
beyond the electric dipole.

It is well known that in the electrostatics of a charge dis-
tribution in vacuum the traces of successive primitive elec-
tric multipole momentssqkk, qikk, etc.d do not contribute to
the potential or the field; this is a consequence of Laplace’s
equationf7,8g. There has been discussion in the literature on
whether this property applies also in macroscopic electrody-
namics; that is, whether one can replaces3d, for example, by
f9g

Di = e0Ei + Pi −
1

3
¹ jQi j , s6d

where

Qi j =
1

2
s3Qij − Qkkdi jd s7d

is the traceless electric quadrupole moment density. It has
been shown that withD given by Eq.s6d, the Maxwell equa-
tions s1d and s2d lose their translational invariancef5g, and
certain macroscopic observables in transmission phenomena
f10g and electrostaticsf11g are unphysical because they de-
pend on the choice of origin for the laboratory system of
coordinates. There are exceptions, where the traceQkk does
not contribute, namely, in the theory of optical activity for
light propagating along the symmetry axis of a fluid of
aligned moleculesf9,10g, and the theory of field-gradient-
induced birefringencef12,13g. However, it is clear that in
general it is not valid to neglectQkk. Even in the simple
example of multipole radiation, the trace of the electric quad-
rupole moment makes a contribution in media where the
radiated fields have longitudinal componentsf14g.

An alternative way of bringing the macroscopic theory
into conformity with electrostatics has been presentedf4g.
Instead of omitting the traceQkk in Eq. s3d, one incorporates
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it into the free source densities in such a way that the Max-
well equationss1d and s2d are unaltered. Thus, forD given
by Eq. s6d, one makes the replacements

r f → r f +
1

6
¹2Qkk, s8d

Jfi → Jfi −
1

6
¹iQ̇kk s9d

in Eqs. s1d and s2d. Higher-order multipole contributions to
D andH can be redefined in a similar way, and they result in
complicated modifications tor f andJ f. The purpose of this
paper is to discuss the physical implications of using the
traceless formalism of Eqs.s6d–s9d, and to compare these
with the use of Eq.s3d, which is based on the primitive
densityQij .

Note that transmission phenomena do not allow one to
distinguish between the primitive and traceless formalisms
because the wave equationf6,15g obtained from Eq.s2d is
the same whether one uses Eq.s3d or Eqs.s6d–s9d. Instead,
we consider linear constitutive relations which express the
response fieldsD andH in terms of the electric and magnetic
fieldsE andB. In addition to providing macroscopic observ-
ables smaterial constantsd, these relations are required for
field matching at a crystal surfacef6,16g, and for our pur-
poses they provide a more stringent test of the theory than do
transmission effects.

The microscopic starting points of both formulations in-
volve expectation values of appropriate multipole moment
operators. It is well known that these expectation values are
the same for the two formulations, at least to electric
quadrupole-magnetic dipole ordersSec. Vd. It is therefore of
interest to enquire what differences, if any, arise as one pro-
ceeds to the macroscopic theory and its transformations.

In Sec. II we give a brief account of recent work on the
multipole theory of constitutive relations based on primitive
moment densities. Although these constitutive relations ob-
tained directly from multipole theory are unphysical, they
can be transformed into physically acceptable relations. In
Sec. III we obtain constitutive relations based on the trace-
less quadrupole moment densitys7d, and show that these are
also unphysical. In Sec. IV it is shown that, within multipole
theory, the latter constitutive relations cannot be successfully
transformed.

II. CONSTITUTIVE RELATIONS FROM PRIMITIVE
QUADRUPOLE MOMENT DENSITIES

We consider the electromagnetic fields of harmonic plane
waves

E = E0e
isk·r−vtd, s10d

and similarly forB. The multipole moment densities in Eqs.
s3d and s4d that are induced in a magnetic medium by the
fields are, to electric quadrupole-magnetic dipole order
f15,17g,

Pi = ai jEj + v−1ai j8 Ėj +
1

2
aijk¹kEj +

1

2
v−1aijk8 ¹kĖj + GijBj

+ v−1Gij8 Ḃj , s11d

Qij = akijEk − v−1akij8 Ėk, s12d

Mi = GjiEj − v−1Gji8 Ėj . s13d

Hereai j saijk andGij8 d are polarizability densities of electric
dipole selectric quadrupole-magnetic dipoled order for non-
magnetics, andai j8 aijk8 , and Gij are their counterparts for
magnetics.

Quantum-mechanical expressions for these polarizability
densities are given in Ref.f16g. For our purposes the relevant
features are their intrinsic symmetriesf9,16,17g

ai j = a ji , ai j8 = − a ji8 , s14d

aijk = aikj, aijk8 = aikj8 s15d

and origin dependencesf9,16g

Dai j = 0, Dai j8 = 0, s16d

Daijk = − Rkai j − Rjaik, Daijk8 = − Rkai j8 − Rjaik8 , s17d

DGij = −
1

2
ve jklRkail8, DGij8 =

1

2
ve jklRkail . s18d

Here ei jk is the Levi-Cività tensor, andD denotes a change
due to an arbitrary shiftR=sRx,Ry,Rzd of the coordinate
origin of the laboratory system. Equationss10d–s18d apply to
both nondissipativeand dissipative media.

For a homogeneous medium, Eqs.s3d, s4d, ands10d–s13d
yield linear constitutive relations of the form

Di = AijEj + TijBj , s19d

Hi = UijEj + XijBj . s20d

The complex material constants represent the permittivity
sAijd, magnetoelectric coefficientssTij and Uijd, and inverse
permeabilitysXijd, and they are given by

Aij
M = e0di j + ai j − iai j8 +

1

2
siaijk − iajik + aijk8 + ajik8 dkk,

s21d

Tij
M = Gij − iGij8 , s22d

Uij
M = − Gji − iGji8 , s23d

Xij
M = m0

−1di j . s24d

The superscriptM denotes material constants obtained di-
rectly from multipole theory, to distinguish them from the
transformed material constants referred to below. We see that
terms of electric quadrupole-magnetic dipole order provide
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the first-order terms in the magnetoelectric coefficients, and
the second-order contribution to the permittivity, while they
do not contribute to the permeability.sTo obtain the first-
order contribution to the permeability, one must work to
electric octopole-magnetic quadrupole orderf18g.d

There are three conditions that must be satisfied by the
material constants in Eqs.s19d and s20d.

s1d Symmetries. For nondissipative media the following
symmetries applyf19–22g:

Aij = Aji
* , Tij = − Uji

* , Xij = Xji
* . s25d

Using Eqs.s14d ands15d, and because the wave vectork and
the polarizability densities are real for nondissipative media,
we see that Eqs.s21d–s24d possess these symmetries.

sii d Translational invariance. Polarizability densities be-
yond electric dipole order are origin-dependent quantities
fsee Eqs.s16d–s18d and Ref. f16gg. Thus when multipole
theory constructs macroscopic observables out of polariz-
ability densities, it should combine these densities in such a
way that the overall expressions are origin independent. This
it does successfully in the wave equation for transmission
phenomena, but not for the material constantss21d–s23d f6g.
For example, according to Eqs.s18d and s22d,

DTij
M = −

i

2
ve jklRksail − iail8d, s26d

which, for ac effects, is not zero in general.
siii d The Post constraint. This constraintf20,23g requires

equality of the traces of the magnetoelectric tensors

Tii = Uii . s27d

It is violated by Eqs.s22d and s23d.
Thus the material constantss21d–s23d, obtained directly

from multipole theory, fail to satisfy two of the above con-
ditions. This failure of the theory occurs also at electric
octopole-magnetic quadrupole orderf6g.

A way round this difficulty is provided by a transforma-
tion theory based on the nonuniqueness ofD andH in Max-
well’s equationsf6,24g. This theory transforms the unphysi-
cal material constantss21d–s23d into f6,24g

Aij = e0di j + ai j − iai j8 +
1

3
saijk8 + ajki8 + akij8 dkk, s28d

Tij = − iSGij8 −
1

2
ve jklakliD + Gij −

1

3
Glldi j −

1

6
ve jklakli8 ,

s29d

Uij = − iSGji8 −
1

2
veiklakljD − Gji +

1

3
Glldi j +

1

6
veiklaklj8 ,

s30d

while it leaves Eq.s24d unchanged. These transformed ex-
pressions are unique, origin independent, and satisfy the
symmetriess25d and the constraints27d. They are therefore
physically acceptable expressions for the material constants
of a magnetic medium to electric quadrupole-magnetic di-
pole order.

III. CONSTITUTIVE RELATIONS FROM TRACELESS
QUADRUPOLE MOMENT DENSITIES

We now come to the main part of this paper, namely, what
are the properties of constitutive relations based on traceless
electric quadrupole moment densities, and, if necessary, can
they be transformed?

We first consider how Eqs.s11d–s13d are modified in the
traceless formalism. The only polarizability densities in Eqs.
s11d–s13d that involve the electric quadrupole moment opera-
tor are the quadrupole polarizability densitiesaijk and aijk8
f16g. Thus Eq.s13d is unchanged, while Eqs.s11d and s12d
becomef25g

Pi = ai jEj + v−1ai j8 Ėj +
1

3
Aijk¹kEj +

1

3
v−1Aijk8 ¹kĖj + GijBj

+ v−1Gij8 Ḃj , s31d

Qi j = AkijEk − v−1Akij8 Ėj . s32d

We refer toAijk andAijk8 as traceless quadrupole polarizabil-
ity densities to distinguish them from the corresponding
primitive densitiesaijk and aijk8 . The relationships between
these tensors can be written down by noting that the primi-
tive densities involve matrix elements of the primitive quad-
rupole momentqij in Eq. s5d f16g, whereas the traceless den-
sities involve matrix elements of the traceless moment

1

2
s3qij − qkkdi jd. s33d

Replacingqij by s33d in Eqs.sB8d andsB9d of Ref. f16g, we
have

Aijk =
3

2
aijk −

1

2
aill d jk, s34d

Aijk8 =
3

2
aijk8 −

1

2
aill8 d jk. s35d

These tensors have the following properties. The tracesAijj
and Aijj8 are zero, and thereforeQi j in Eq. s32d is traceless.
Also, from Eqs.s34d, s35d, s15d, ands17d we have the intrin-
sic symmetries

Aijk = Aikj, Aijk8 = Aikj8 , s36d

and the origin dependences

DAijk = −
3

2
Rkai j −

3

2
Rjaik + Rlaild jk, s37d

DAijk8 = −
3

2
Rkai j8 −

3

2
Rjaik8 + Rlail8d jk. s38d

Constitutive relations follow from Eqs.s4d, s6d, s10d, s13d,
s31d, ands32d. They have the forms19d and s20d with
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Aij
M = e0di j + ai j − iai j8 +

1

3
siAijk − iAjik + Aijk8 + Ajik8 dkk

s39d

and Tij
M, Uij

M, andXij
M given by Eqs.s22d–s24d. The permit-

tivity tensors39d satisfies the symmetry ins25d, but it is not
origin independent according tos37d ands38d. Thus the ma-
terial constants obtained directly from multipole theory using
the traceless formalism have the same unphysical properties
as those of the primitive formalism in Sec. II: three of them
are origin dependent and the Post constraint is violated. We
therefore consider whether these material constants can be
transformed into physically acceptable quantities.

IV. TRANSFORMATIONS

The response fields in Eqs.s19d and s20d are represented
by complex harmonic plane waves likes10d. For such fields,
the Maxwell equationss1d and s2d are invariant under the
transformationsf24g

Aij → Aij
M −

1

v
eiklkkUlj

G +
1

v
e jklkkZil

F, s40d

Tij → Tij
M −

1

v
eiklkkXlj

G + Zij
F , s41d

Uij → Uij
M + Uij

G +
1

v
e jklkkYil

F, s42d

Xij → Xij
M + Xij

G + Yij
F s43d

of the direct multipole material constants. The superscriptF
denotes a Faraday transformation, whileG denotes a gauge
transformationf24g.

The tensorsUij
G, Xij

G, Yij
F, andZij

F should satisfy the follow-
ing criteria.

sid For a given multipole order, they are constructed from
the polarizability densities of that order, anddi j andei jk; see
s44d. They are linear in the polarizability densities and, at
electric quadrupole–magnetic dipole order, are independent
of the wave vectork.

sii d The transformations should be consistent with the re-
quirements of space inversion and time reversal, and this
means thatUij

G andZij
F are time-odd axial tensors, whileXij

G

andYij
F are time-even polar tensors.

siii d The transformations should preserve the symmetries
s25d and they should impose origin independence on the ma-
terial constants.

sivd A Faraday transformation cannot change the response
fields D andH.

We now apply this transformation theory to the traceless
formalism at electric quadupole–magnetic dipole order. Con-
sider first a nonmagnetic medium. Then the nonzero polariz-
ability densities areGij8 and Aijk. The available building
blocks for constructingUij

G, Xij
G, Yij

F, andZij
F are the second-

rank tensors

Gij , Gji8 , Gll8di j , eiklAklj, e jklAkli, ei jkAllk . s44d

fHere we have taken account of the propertyAkll =0, and the
symmetry in Eq.s36d for Aijk.g The tensors ins44d are all
axial and therefore so are linear combinations constructed
from them. BecauseXij

G and Yij
F are necessarily polarssee

aboved, it follows that

Xij
G = Yij

F = 0. s45d

Using s44d we write

Uij
G = b1Gij8 + b2Gji8 + b3Gll8di j + b4eiklAklj + b5e jklAkli

+ b6ei jkAllk , s46d

Zij
F = g1Gij8 + g2Gji8 + g3Gll8di j + g4eiklAklj + g5e jklAkli

+ g6ei jkAllk , s47d

where the 12 coefficientsbi andgi are to be determined. The
tensors on the right-hand sides of Eqs.s46d and s47d are all
time even, whileUij

G and Zij
F are necessarily time oddssee

aboved. Therefore thebi andgi are either imaginary or zero.
Next, we make a convenient manipulation. From Eqs.

s40d, s46d, ands47d, and Faraday’s law for a plane wave, we
see thatAijEj contains the terms

−
1

v
seiklb3dl j − e jklg3dildGmm8 kkEj = − sb3 + g3dGmm8 di jBj .

s48d

Incorporating Eq.s48d in TijBj in Eq. s19d, and using the
direct multipole results of the previous section, we obtain
from Eqs.s40d–s43d and s45d–s47d

Aij = e0di j + ai j +
1

3
ikksAijk − Ajikd −

1

v
eiklkksb1Glj8

+ b2Gjl8 + b4elmnAmnj + b5e jmnAmnl + b6el jmAnnmd

+
1

v
e jklkksg1Gil8 + g2Gli8 + g4eimnAmnl + g5elmnAmni

+ g6eilmAnnmd, s49d

Tij = − iGij8 + g1Gij8 + g2Gji8 + g4eiklAklj + g5e jklAkli + g6ei jkAllk

− b3Gll8di j , s50d

Uij = − iGji8 + b1Gij8 + b2Gji8 + b3Gll8di j + b4eiklAklj + b5e jklAkli

+ b6ei jkAllk , s51d

Xij = m0
−1di j . s52d

Now impose origin independence onTij andUij . For a shift
of origin R=s0,0,Rzd one finds from Eqs.s51d, s37d, and
s18d
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DUxy = RzFaxxS1

2
vb1 +

3

2
b5 −

3

2
b6D + ayyS1

2
iv −

1

2
vb2

−
3

2
b4 −

3

2
b6D + azzs− b4 + b5 − 2b6dG . s53d

Since axx,ayy,azz are independent components ofai j , the
invarianceDUxy=0 requires

vb1 + 3b5 − 3b6 = 0, s54d

iv − vb2 − 3b4 − 3b6 = 0, s55d

− b4 + b5 − 2b6 = 0. s56d

Invariance of the other components ofUij does not provide
additional equations for thebi. From Eqs.s54d–s56d we have

b2 = i + b1, b5 = −
2

3
vb1 − b4, b6 = −

1

3
vb1 − b4.

s57d

With Eq. s57d in Eq. s51d, a short calculation shows that the
terms inb4 cancel, and

Uij = b1SGij8 + Gji8 −
2

3
veiklAklj +

1

3
vei jkAllkD + b3Gll8di j .

s58d

A similar calculation based on Eq.s50d andDTxy=0 yields

g2 = − i + g1, g5 = −
2

3
vg2 − g4, g6 = −

1

3
vg2 − g4.

s59d

Then Eq.s50d becomes

Tij = g2SGij8 + Gji8 −
2

3
ve jklAkli −

1

3
vei jkAllkD − b3Gll8di j .

s60d

The magnetoelectric coefficientss58d ands60d are origin in-
dependent for all values of the coefficientsb1, b3, and g2.
Note that it was only necessary to impose origin indepen-
dence on thexy components ofTij andUij ; invariance of all
other components followed.

We now impose the symmetryTij =−Uji
* of Eq. s25d. Be-

cause thebi and gi are imaginary or zero in Eqs.s58d and
s60d, this means

b1 = g2, b3 = 0.

Thus Uij in Eq. s58d is proportional tog2 and the response
field H in Eq. s20d depends ong2, which is a coefficient in a
Faraday transformation; see Eq.s47d. This violates the re-
striction mentioned above, that a Faraday transformation
cannot change a response fieldf24g. Thus g2=0, and the
magnetoelectric coefficients of a nonmagnetic medium are
transformed to zero,

Uij = Tij = 0. s61d

The transformed permittivitys40d, or s49d, is now fixed
because from Eqs.s41d, s42d, s45d, ands61d:

Uij
G = − Uij

M = iGji8 s62d

Zij
F = − Tij

M = iGij8 . s63d

From Eqs.s39d, s40d, s62d, ands63d we have

Aij = e0di j + ai j + iF1

3
sAijk − Ajikd −

1

v
eiklGjl8 +

1

v
e jklGil8Gkk.

s64d

This is the transformed permittivity for a nonmagnetic
medium according to the traceless theory. It is not origin
independent because from Eqs.s16d, s18d, ands37d,

DAij =
1

3
ikkRlsaild jk − a jldikd, s65d

which is not zero in general.
If the medium is magnetic then there are additional con-

tributions to the material constants: that inai j8 fsee Eq.s21dg
and the transformed ones associated with the polarizability
densitiesGij andAijk8 . These contributions must be added to
Eqs.s61d, s64d, ands52d. The details are similar to the above
and we simply quote the final results:

Aij = e0di j + ai j − iai j8 + F i

3
sAijk − Ajikd −

i

v
eiklGjl8

+
i

v
e jklGil8 +

2

9
sAijk8 + Ajik8 + Akij8 d

−
2

45
s2Allk8 di j − Alli8 d jk − Allj8 dkidGkk, s66d

Tij = Gij −
1

3
Glldi j +

2

45
vei jkAllk8 −

1

9
ve jklAkli8 , s67d

Uij = − Gji +
1

3
Glldi j +

2

45
vei jkAllk8 +

1

9
veiklAklj8 , s68d

Xij = m0
−1di j . s69d

These are the total transformed material constants, to
electric quadrupole–magnetic dipole order, of a magnetic
medium in the traceless theory. They satisfy the symmetries
s25d, and Tij and Uij are traceless and origin independent.
However, the permittivityAij is origin dependent because,
according to Eqs.s16d, s18d, s37d, ands38d,

DAij =
1

3
ikkRlfsail − iail8dd jk − sa jl + ia jl8 ddikg. s70d

Such origin dependence for a macroscopic observable is,
of course, unphysical. For example, ifD0 denotes the ampli-
tude of a harmonic response fieldD then, from Eqs.s19d and
s67d,
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DD0i = sDAijdE0j . s71d

According to Eqs.s70d and s71d, the amplitude of the trans-
formed response fieldD is origin dependent in the traceless
formalism.

V. DISCUSSION

sid The two main results obtained in this paper are, first,
that constitutive relations obtained directly from multipole
theory in the traceless formalism are unphysicalsSec. IIId,
and, second, that they cannot be transformed into physically
acceptable relationssSec. IVd. This contrasts with the primi-
tive formalism where unphysical constitutive relations can be
successfully transformedsSec. IId.

sii d Because the polarizability densitiesGij , Gij8 , Aijk, and
Aijk8 of electric quadrupole–magnetic dipole order do not oc-
cur again at higher multipole orders, the response fieldD
associated with the transformed permittivitys66d of the
traceless theory will be unphysical to all multipole orders.

siii d Comparison of Eqs.s28d–s30d and s66d–s68d shows
that the transformed material constantsAij , Tij , andUij in the
primitive and traceless versions of the theory differ markedly
in their dependence on the polarizabilitiesGij8 , Aijk, andAijk8 .
For example, in Eqs.s66d–s68d the densityGij8 has been
transformed out of the magnetoelectric coefficients and into
the permittivity.

sivd It is interesting to consider where the differences in
these two versions of the theory arise. The starting points of
both versions are the quantum-mechanical relations on which
Eqs.s11d–s13d, s31d, ands32d are based; that is, on relations
between expectation values of multipole moment operators
selectric dipole and quadrupole, magnetic dipoled of a charge
distribution in vacuum and the microscopic electromagnetic
fields f6,17g. These relations are independent of whether one
uses a primitive or a traceless quadrupole moment operator.
This is due to the transverse nature of the microscopic fields,
as is clear from the treatment of Barronf26g. Thus the mi-
croscopic starting points of the primitive and traceless theo-

ries are the same.sThis is not true at electric octopole order
because the trace of the primitive electric octopole moment
operator does contribute to the expectation valuesf27g.d

svd A difference in the two approaches first appears in the
permittivity tensors obtained directly from macroscopic mul-
tipole theory. The difference of the permittivitiess39d and
s21d is, when expressed in terms ofaijk and aijk8 using Eqs.
s34d and s35d, equal to

−
1

6
isaill − iaill8 dd jkkk +

1

6
isajll + iajll8 ddikkk. s72d

The first term ins72d makes a contribution toD in Eq. s19d if
the macroscopic electric fieldE is not transverse. The second
term in Eq.s72d is due to the different electrodynamic ex-
pressionss3d and s6d for D.

svid The major differences between the results of the two
theories occur after the unphysical material constants of each
have been transformed, and then come from a seemingly
small cause: namely, the different translational properties of
Aijk andaijk on the one hand, andAijk8 andaijk8 on the other;
see Eqs.s17d, s37d, and s38d. Specifically, it is the terms
Rlaild jk and Rlail8d jk in Eqs. s37d and s38d that cause the
transformation theory to produce such different results.

svii d At electric quadrupole–magnetic dipole order there is
no contribution to the permeability of the medium. This is
true of both the direct and the transformed theories, in either
the primitive or the traceless versionsSecs. II–IVd. The ac
permeability is a property of electric octopole–magnetic
quadrupole order and its expression in direct multipole
theory is unphysicalf6g.

sviii d The transformation theory has been successfully ap-
plied to electric octopole–magnetic quadrupole order in the
primitive formalism, thereby providing a physically accept-
able expression for the lowest-order contribution to the ac
permeabilityf18g. These calculations are considerably more
difficult than those of electric quadrupole-magnetic dipole
order, and they pose a challenge for multipole theory. Their
successful completion encourages confidence in the primi-
tive formulation of the theory.
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